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Abstract A branching random walk in presence of an absorbing wall moving at a constant
velocity v undergoes a phase transition as the velocity v of the wall varies. Below the critical
velocity vc, the population has a non-zero survival probability and when the population sur-
vives its size grows exponentially. We investigate the histories of the population conditioned
on having a single survivor at some final time T . We study the quasi-stationary regime for
v < vc when T is large. To do so, one can construct a modified stochastic process which is
equivalent to the original process conditioned on having a single survivor at final time T .
We then use this construction to show that the properties of the quasi-stationary regime are
universal when v → vc. We also solve exactly a simple version of the problem, the exponen-
tial model, for which the study of the quasi-stationary regime can be reduced to the analysis
of a single one-dimensional map.

Keywords Branching random walks · Quasi-stationary regime · Traveling waves ·
Birth-death processes · Transition to an absorbing state

1 Introduction

Branching random walks are often used as simple models of evolving populations, with or
without selection. They can describe how a population invades an empty domain, how a fa-
vorable mutation spreads [19, 20] or how the fitness of a population evolves under selection
[16, 29]. Recently very simple models [7, 9, 29, 41] of neo-Darwinian evolution [39] have
been studied, motivated in particular by in vitro experiments [16]. In these models each in-
dividual of a population of fixed size is characterized by a single number, a trait, which we
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can call its fitness or its adaptability. From one generation to the next, this trait is transmitted
to the offspring up to small variations which represent the effect of mutations. Then at each
generation, only the N fittest individuals survive. It was shown in [9] that these models can
be mathematically reduced to the study of traveling waves in presence of noise, a problem
[14, 17, 32–34, 37, 38] which appears in many other contexts such as reaction-diffusion
problems, disordered systems [6] or QCD [25, 30, 35].

Another version of the same model of evolution was also considered in [12] where the
size of the population may vary with time and the selection takes place by eliminating at
each generation all the individuals which are below some threshold along the fitness axis.
When this threshold increases linearly with time, the model reduces to the problem of a
branching random walk in presence of an absorbing wall moving at a constant velocity v.
Depending on how fast the wall moves, the population can either survive or get extinct. The
survival probability, in the long time limit, decreases as the velocity v of the wall increases
and, above some critical velocity vc , the population gets extinct with probability 1.

A model fully equivalent to the branching random walk in presence of an absorbing mov-
ing wall, that we study here, is the case of a branching random walk with a drift and a fixed
absorbing threshold, which has been introduced in [1] in order to describe the aging process
in a cell proliferation model. In this case too, there is a phase transition to an absorbing state
as the drift increases.

Similar phase transitions to an absorbing state (the empty population) have been exten-
sively studied in the theory of non-equilibrium systems [24, 36], in problems like directed
percolation [15] or reaction-diffusion processes [26]. Beyond the characterization of the
transition to this absorbing state, there has been an increasing interest to study the process
conditioned on the survival at a very late time [11, 13, 22].

In many cases, evolutions conditioned to avoid the absorbing empty state lead to a quasi-
stationary regime: for example, in a birth-death process (see [2, 10, 23, 27, 28] and Sect. 2
below), if one conditions on a given non-zero size at a final time T and looks at the popula-
tion at a time t such that both t and T − t are much larger than the characteristic relaxation
time of the system, the statistical properties depend neither on the initial condition nor on t

and T and one observes a quasi-stationary state.1 The probability of the events which con-
tribute to these quasi-stationary regimes decreases with T , and therefore they are difficult
to observe in simulations. There are however a number of cases for which one can modify
the process (i.e. determine the right bias) [21, 22] to generate the quasi-stationary regime
directly.

In the present work, we consider the problem of a branching random walk in presence
of an absorbing boundary which moves at a constant velocity v (see Fig. 1 and [12]). On
the infinite line, i.e. without any boundary, the population spreads linearly in time [5, 31]
at a velocity vc and the number of walkers grows exponentially with time. The presence
of a moving absorbing wall introduces a competition between the growth and the extinc-
tion due to the wall. When v > vc , the population gets extinct with probability 1, whereas
when v < vc , this extinction probability is strictly less than 1 and there is a non-zero prob-
ability that the population grows exponentially with time. Here, we mostly study the quasi-
stationary regime, conditioned on the survival of a few individuals at a very late time T ,

1In the present paper, we use the term “quasi-stationary” to describe a situation at time t conditioned on the
fact that there is a fixed non-zero number of individuals at a much larger time T . Note that “quasi-stationary”
is often used to describe a different situation where the two times t and T coincide [13, 18, 42, 45]. What we
call here a quasi-stationary process is sometimes called a “Q-process” [10].
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Fig. 1 Branching random walk
in presence of an absorbing wall.
The circles represent branching
events and the crosses absorption
by the wall

for v < vc . This quasi-stationary regime has already been studied in the mathematical liter-
ature, where a modified process was invented [21, 22] which allows one to generate typical
evolutions in this quasi-stationary regime. Our main goal in the present paper is to show
how the properties (average size of the population, density profiles) can be obtained in the
quasi-stationary regime and how universal expressions for these properties emerge when
v → vc .

The paper is organized as follows: in Sect. 2, we recall how the quasi-stationary regime
can be calculated in the case of a simple birth-death process, and how the distribution of the
population size becomes universal near the transition. In Sect. 3, we extend the approach of
Sect. 2 to the branching random walk process in presence of an absorbing wall. In Sect. 4, we
show how the quasi-stationary regime can be generated by a modified process, as already
described in [21, 22] and we obtain explicit expressions of the density in this regime. In
Sect. 5, we show that the average size of the population and the average density profile
become universal as v → vc . In Sect. 6, we analyze a simpler model, the exponential model,
for which the whole distribution of the population size can be calculated.

2 An Example of Birth-Death Processes: The Galton-Watson Process

In this section we discuss the simple case of the Galton-Watson process [23, 27]. Our goal
is to explain in this well-known example the approach that we will use in a more general
context in Sects. 3–5.

2.1 Discrete Time

We first consider the discrete time case. The population is fully characterized by its size Nt

at time t . At every time step, each individual is replaced by k offspring with probability
pk (in particular, p0 is the probability that an individual leaves no descendance). Let us
define the extinction probability Qe(t) as the probability that Nt = 0, given that we start
with a single initial individual at time 0. During the first time step, the initial individual
may branch into k offspring: thus, extinction of the initial lineage after t + 1 time steps
is equivalent to the extinction of the lineages of its k offspring after t time steps. Since in
this model the descendants of these offspring are independent, Qe(t) satisfies the following
exact recursion:

Qe(t + 1) = F (Qe(t)) (2.1)
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Fig. 2 Size Nt of the population
at an intermediate time t

knowing that the final size is
NT = m at time T = t + t ′

where

F(Q) =
∞∑

k=0

pkQ
k (2.2)

with the initial condition Qe(0) = 0. For large t , Qe(t) converges to a limit Q∗
e and 1 − Q∗

e

is the probability of eternal survival of the population. This limit Q∗
e is the attractive fixed

point of the map F , satisfying Q∗
e = F(Q∗

e ). The function F(Q) is convex and satisfies
F(1) = 1 and F(0) = p0 > 0. The average number of offspring of an individual is given by
F ′(1) = ∑

k pkk = k. If k < 1 the stable fixed point is Q∗
e = 1 and the population dies with

probability 1. On the other hand when k > 1, there is a non-zero survival probability 1 −Q∗
e

in the t → ∞ limit.
If one starts at t = 0 with a single individual, the distribution of the population size Nt

can be characterized by its generating function

G1(t;μ) = 〈e−μNt 〉. (2.3)

The size Nt is the sum of the contributions of all the offspring at t = 1. The independence of
the lineages of the k offspring implies that G1 evolves according to the same equation (2.1)
as Qe(t):

G1(t + 1;μ) = F (G1(t;μ)) , (2.4)

the only difference being in the initial condition G1(0;μ) = e−μ. Note that the extinction
probability is given by the particular case Qe(t) = G1(t;∞).

For large T and a given finite size m, the events NT = m are more and more rare since the
population size either vanishes or grows exponentially. For such events, however, one may
be interested in the sizes Nt , 0 ≤ t ≤ T , conditioned on the fact that NT = m (as in Fig. 2).
To do so, let us divide the time interval [0, T ] into two intervals of lengths t and t ′ = T − t

and consider the two-time generating functions G2(t, t
′;μ,ν) defined as:

G2(t, t
′;μ,ν) = 〈e−μNt −νNt+t ′ 〉. (2.5)

As for Qe and G1, one can easily show, by considering the first time step, that G2(t, t
′;μ,ν)

as a function of t also evolves according to (2.1):

G2(t + 1, t ′;μ,ν) = F(G2(t, t
′;μ,ν)), (2.6)

with the initial condition

G2(0, t ′;μ,ν) = e−μG1(t
′;ν). (2.7)
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If one expands G2(t, t
′;μ,ν) in powers of e−ν :

G2(t, t
′;μ,ν) =

∞∑

m=0

e−νmRm(t, t ′;μ) (2.8)

the coefficients Rm(t, t ′;μ) are related to the generating functions of Nt conditioned on the
survival of m individuals at time T (i.e. NT = m):

Rm(t, t ′;μ) = Pm(t + t ′)〈e−μNt |size Nt+t ′ = m〉 (2.9)

where Pm(t + t ′) is the probability that Nt+t ′ = m. As in the special case μ = 0

G2(t, t
′;0, ν) = G1(t + t ′;ν) =

∞∑

m=0

e−νmPm(t + t ′) (2.10)

one can extract the probability Pm(t + t ′) from the expansion (2.10) of G1(t + t ′, ν) in order
to normalize Rm(t, t ′;μ) in (2.9) and get the conditional probability 〈e−μNt |size m at t + t ′〉.

We are now going to see that 〈e−μNt |size m at t + t ′ 〉 has a limit as t and t ′ → ∞ and
to show how to compute the distribution of Nt in this quasi-stationary regime. Since G1

and G2 evolve according to (2.4, 2.6), their long time behaviours can be extracted from the
properties of F near the fixed point Q∗

e . Let ut be a sequence obtained by iterating a map F

ut+1 = F(ut ) (2.11)

with an initial condition u0. If it converges exponentially to a fixed point Q∗
e , one can write:

ut 	 Q∗
e + ΛtA(u0) + o(Λt), with Λ = F ′(Q∗

e ) (2.12)

where the amplitude A(u0) is defined by:

A(u0) = lim
t→∞

ut − Q∗
e

Λt
. (2.13)

Using (2.12) for G2 and G1 together with the initial condition (2.7) for large t and t ′ gives:

G2(t, t
′;μ,ν) = Q∗

e + ΛtA(e−μG1(t
′;ν)) + o(Λt)

= Q∗
e + ΛtA

(
e−μQ∗

e + e−μΛt ′A(e−ν) + . . .
) + . . . (2.14)

= Q∗
e + ΛtA

(
e−μQ∗

e

) + Λt+t ′A′ (e−μQ∗
e

)
e−μA(e−ν) + . . . .

If one expands A(e−ν) = ∑
m Ame−νm, one gets from (2.8, 2.10, 2.14) at leading order in

Λt+t ′ for m ≥ 1:

Pm(t + t ′) 	 Λt+t ′A′(Q∗
e )Am = Λt+t ′Am, (2.15a)

Rm(t, t ′;μ) 	 Λt+t ′A′(e−μQ∗
e )e

−μAm. (2.15b)

From these equations and (2.9), it is easy to see that for t, t ′ → ∞:

〈e−μNt |size Nt+t ′ = m 〉 t,t ′→∞−−−−→ 〈e−μN 〉qs
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with

〈e−μN 〉qs = A′(e−μQ∗
e )e

−μ. (2.16)

This shows that the knowledge of the amplitude A defined in (2.13) determines the whole
distribution of the population size in the quasi-stationary regime [28].

In general there is not a closed expression of A for a given map F . One can however relate
the expansions of A and of F in the neighbourhood of the fixed point Q∗

e . The definition
(2.13) implies that A satisfies:

ΛA(Q) = A(F (Q)),

A(Q∗
e ) = 0, A′(Q∗

e ) = 1.
(2.17)

By taking successive derivatives of (2.17) at x = Q∗
e , one can relate the Taylor expansions

of A and F

A(Q∗
e + ε) = ε + ε2

2!A
(2) + ε3

3!A
(3) + . . .

F (Q∗
e + ε) = Q∗

e + Λε + ε2

2! F
(2) + ε3

3! F
(3) + . . .

and get:

A(2) = F (2)

Λ − Λ2
(2.18a)

A(3) = F (3)

Λ(1 − Λ)(1 + Λ)
+ 3(F (2))2

Λ(1 + Λ)(1 − Λ)2
, etc. (2.18b)

Then, the moments of Nt in the quasi-stationary regime can be obtained by taking successive
derivatives of (2.16) at μ = 0:

〈N〉qs = 1 + Q∗
eA

(2) (2.19a)

〈N2〉qs = 1 + 3Q∗
eA

(2) + (Q∗
e )

2A(3), etc. (2.19b)

As one approaches the transition point (i.e. k → 1 and Q∗
e → 1), expressions (2.18, 2.19)

diverge since Λ → 1 and the moments scale as:

〈N〉qs 	 A(2) 	 F (2)

1 − Λ
(2.20)

〈N2〉qs

〈N〉2
qs

	 A(3)

(A(2))2
	 3Λ

(1 + Λ)
+ (1 − Λ)F (3)

(1 + Λ)(F (2))2
(2.21)

and so on for higher moments 〈Np〉qs/〈N〉pqs, p > 2. When the first moments of the
number of offspring are finite (for example when k3, k4 < ∞), the ratios such as
(1 − Λ)F (3)/((1 + Λ)(F (2))2) go to zero as Λ → 1 and one gets:

〈N〉qs 	 F (2)(Q∗
e )

1 − F ′(Q∗
e )

(2.22a)
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〈N2〉qs

〈N〉2
qs

→ 3

2
(2.22b)

〈N3〉qs

〈N〉3
qs

→ 3, etc. (2.22c)

One can notice that these expressions are valid on both sides of the transition, i.e. for k → 1+
and k → 1− but do not depend otherwise on the pk’s. This agrees with the fact (see [23] and
Sect. 2.3 below) that the distribution of Nt in the quasi-stationary regime becomes universal
near the transition k = 1.

2.2 Continuous Time Version

We now consider the continuous time version of the previous birth-death process: at any
instant t , the population is fully characterized by its size Nt . During every infinitesimal
time dt , each individual either dies with probability β0dt or branches into k offspring with
probability βkdt . If one divides the time interval [0, t + dt] into the first interval dt and the
remaining interval [dt, t + dt], the independence of the evolution of the offspring implies
that the extinction probability Qe(t) satisfies as in (2.1):

Qe(t + dt) =
(

1 −
∑

k≥0

βkdt

)
Qe(t) +

∑

k≥0

βkdtQe(t)
k (2.23)

which gives in the limit dt → 0:

∂tQe(t) = F(Qe(t)), F (Q) =
∑

k≥0

βk(Q
k − Q). (2.24)

This is the continuous time version of (2.1). In the long time limit, Qe(t) converges to the
stable fixed point Q∗

e of F :

F(Q∗
e ) = 0, F ′(Q∗

e ) = λ < 0. (2.25)

The transition occurs when Q∗
e → 1 and λ → 0. It corresponds to a growth rate

α =
∑

k≥0

βk(k − 1) (2.26)

which vanishes. If α < 0, Q∗
e = 1 whereas for α > 0, one has Q∗

e < 1.
The generating functions G1 and G2 can be introduced as in (2.3, 2.5) and the discussion

of their long time behaviours is the same as in (2.14). For a flow u(t) such that ∂tu(t) =
F(u(t)) and u(0) = u0, one can define an amplitude A as in (2.12) by:

A(u0) = lim
t→∞

u(t) − Q∗
e

eλt
. (2.27)

The generating functions of the size Nt in the quasi-stationary regime are still given by
(2.16) but the definition of A for continuous time leads to the following continuous time
version of (2.17):

λA(Q) = A′(Q)F(Q). (2.28)
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As in (2.18), the expansions of A and F near the fixed point Q∗
e can be related through:

A(2) = −F (2)

λ
, (2.29a)

A(3) = 3

2

(
F (2)

λ

)2

− F (3)

2λ
. (2.29b)

The average size is given by 〈N〉qs = −F (2)/λ and diverges as one approaches the transition
α → 0. For models with finite moments kn, the first moments 〈Nn〉qs obtained from the
expansion (2.29) of A go to the same values as in (2.22).

As (2.28) is a first order differential equation, one can fully determine A using
A′(Q∗

e ) = 1 (which follows from definition (2.28)):

A(Q) = (Q − Q∗
e ) exp

[∫ Q

Q∗
e

(
λ

F(y)
− 1

y − Q∗
e

)
dy

]
. (2.30)

2.3 Universality of the Stationary Regime

Near the transition, Q∗
e is close to 1, λ is small and for Q close to Q∗

e , one can approximate
F(Q) by the first two terms of its quadratic expansion near Q∗

e (when k2 < ∞):

F(Q) 	 λ(Q − Q∗
e ) + B(Q − Q∗

e )
2. (2.31)

Then (2.30) becomes near Q∗
e :

A(Q) 	 λ(Q − Q∗
e )

λ + B(Q − Q∗
e )

(2.32)

and from (2.16), one gets that for μ small:

〈e−μN 〉qs 	 1

(1 − B
λ
μ)2

. (2.33)

Close to the transition, B 	 F ′′(1)/2 	 (k2 −k)/2 and this shows that in the quasi-stationary
regime:

〈N〉qs 	 −k2 − k

λ
(2.34)

and the distribution of the ratio x = N/〈N〉qs becomes universal [23]:

P (x) 	 4xe−2x (2.35)

with the ratios of the first moments given by (2.22).
The case of slowly decreasing branching rates βk for which the second moment k2 is

infinite leads to other universal distributions near the transition, as shown in [40] and in
Appendix A.
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3 Quasi-Stationary Regime for a Branching Random Walk in Presence of an
Absorbing Wall

3.1 Evolution of the Extinction Probability

We now consider a population for which each individual is characterized by its position x

relative to an absorbing wall. Each individual diffuses and branches into k offspring with
probability βkdt during dt (for simplicity we set β0 = 0, i.e. there is no spontaneous death;
also there is no dependence on β1 as it has no effect on the population). The absorbing
wall moves at constant velocity v and every individual crossing the wall disappears instanta-
neously (see Fig. 1). In absence of the wall, the population grows exponentially and occupies
a region which spreads in space linearly at a constant velocity vc [5, 31]. The presence of
the wall introduces a competition between the exponential growth and the absorption by the
wall. For v > vc , the wall moves faster than the population spreads [12] and the population
dies with probability 1.

If one starts at time t = 0 with a single individual at distance x from the moving wall,
the extinction probability Qe(x, t) (i.e. the probability that all the descendants have been
absorbed by the wall during the interval [0, t]) evolves according to:

Qe(x + vdt, t + dt) =
∫

e−η2/4

√
4π

Qe(x + η
√

dt, t)dη

+
∞∑

k=2

βk

(
Qe(x, t)k − Qe(x, t)

)
dt. (3.1)

To derive this equation, we divide, as in Sect. 2, the time interval [0, t + dt] into a first time
step dt and a second interval [dt, t + dt]. During the first infinitesimal time step dt , the
individual diffuses (its position is shifted by an amount η

√
dt where η is a Gaussian random

variable such that 〈η〉 = 0 and 〈η2〉 = 2) and may branch into k ≥ 2 individuals with rate βk .
If this branching event happens, then, during the second time interval [dt, t + dt], all the k

offspring present at time dt have independent histories.
In the limit dt → 0, this becomes:

∂tQe = F(Qe) (3.2)

where the functional F is defined as:

F(Q) = ∂2
xQ(x) − v∂xQ(x) + g(Q(x)) (3.3)

g (q) =
∞∑

k=2

βk(q
k − q). (3.4)

Qe evolves according to a traveling wave equation [43]. Here however the evolution is
limited to a semi-infinite line with the boundary condition Qe(0, t) = 1 on the wall. The
non-linear function g(q) contains all the information on the branching rates βk of the walk.
In the long time limit t → ∞, the extinction probability Qe(x, t) converges to the stable
solution Q∗

e of F(Q∗
e ) = 0 and therefore satisfies:

∂2
xQ∗

e − v∂xQ
∗
e + g

(
Q∗

e (x)
) = 0. (3.5)



212 D. Simon, B. Derrida

For v > vc , the wall moves faster than the spreading velocity vc of the population, so that
all the population gets absorbed and for large t , Qe(x, t) has the shape of a front moving at
velocity v − vc . Therefore Qe(x, t) converges to the unique stable fixed point Q∗

e = 1 (the
population becomes extinct with probability 1 whatever the initial distance x to the wall is).

For v < vc , there exists a non trivial fixed point Q∗
e with Q∗

e (0) = 1 and Q∗
e (x) → 0 for

x → ∞ and Qe(x, t) → Q∗
e (x) as t → ∞, with relaxation times τn:

Qe(x, t) 	 Q∗
e + A1φ1(x)e−t/τ1 + . . . . (3.6)

These relaxation times τn are related through λn = −1/τn to the eigenvalues λn of the linear
operator L obtained by linearizing the functional F(Q∗

e + εφ) = εL[φ] + o(ε) around the
fixed point Q∗

e . The eigenvectors φn(x) and the eigenvalues λn satisfy:

L[φn] = λnφn (3.7)

with the linear operator L given by:

L[φ] = ∂2
xφ − v∂xφ + g′ (Q∗

e (x)
)
φ. (3.8)

Defining ψ(x) = φ(x)e−vx/2 maps (3.8) to a Schrödinger equation

−∂2
xψ(x) + V (x)ψ(x) = (−λ)ψ(x) (3.9)

with a potential V given by:

V (x) = v2

4
−

∑

k

βk(kQ∗
e (x)k−1 − 1) (3.10)

(note that for v > vc , one has Q∗
e (x) = 1, so the potential V is constant and the spectrum

is continuous. For v > vc , Qe(x, t) converges to Q∗
e (x) in a non uniform way, so that there

are always some x for which Qe(x, t) − Q∗
e (x) is not small and the long time behaviour of

Qe(x, t) cannot be understood by linearizing around the fixed point Q∗
e (x) = 1).

As v approaches vc from below, the region where Q∗
e (x) is close to 1 increases (and

diverges when v = vc). As a consequence, as v → vc , the potential well V (x) in (3.10) has
a finite depth but an increasing length and this gives rise to a discrete spectrum for small
eigenvalues. We will calculate the eigenvalues λn of L in this limit v → vc in Sect. 5.1 and
Appendix B.

In the rest of this paper we will only consider the case v < vc when the smallest eigen-
values of L form a discrete spectrum (only the construction of Sect. 4.1 will be also valid
for v > vc as one does not need there the slowest eigenvalue to be isolated).

In contrast to (2.3), the population is now not only characterized by its size Nt but also by
the positions of all the individuals. One can however follow the same approach as in Sect. 2.
Let us introduce the generating function G1:

G1(x, t;f ) =
〈

Nt∏

i=1

e−f (x
(t)
i

)

〉
(3.11)

where f is now a positive test function of x and plays the role of μ in (2.3), Nt is the size of
the population at time t generated by an initial individual at x and the x

(t)
i are the positions

relatively to the wall of all its offspring at t . The independence of the lineages implies that
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G1 for the initial individual is the product of the G1’s of its offspring after the first time
step dt . Therefore, the evolution of G1(x, t;f ) can be derived as in (3.1) for Qe(x, t) and
one gets:

∂tG1(x, t;f ) = F
(
G1(x, t;f )

)
. (3.12)

Absorption by the wall implies G1(0, t;f ) = 1 for all t > 0 and, for a single initial individ-
ual at x when t = 0, the initial condition for G1 is:

G1(x,0;f ) = e−f (x). (3.13)

3.2 Conditioning on Survival

As in Sect. 2, one can then try to calculate the size Nt of the population or the density ρ(x)

at time t conditioned on the survival of m individuals at later time T = t + t ′ (see Fig. 2). To
do so we introduce the two-time generating function at G2(x, t, t ′;μ,ν) defined as in (2.5):

G2(x, t, t ′;f, ν) =
〈

exp

(
−

Nt∑

i=1

f (x
(t)
i ) − νNt+t ′

)〉
(3.14)

given that at t = 0 there is a single individual at distance x from the wall. Once more, one
can show that G2(x, t, t ′;f, ν) (as a function of x and t only) evolves as G1(x, t;f ), i.e.
according to (3.12) with the following initial condition:

G2(x,0, t ′;f, ν) = e−f (x)G1(x, t ′;ν). (3.15)

As in (2.8–2.10), one can expand G2 in powers of e−ν :

G2(x, t, t ′;f, ν) =
∞∑

m=0

e−νmRm(x, t, t ′;f ) (3.16)

G2(x, t, t ′;0, ν) = G1(x, t + t ′;ν) =
∞∑

m=0

e−νmPm(x, t + t ′) (3.17)

where Pm(x, t + t ′) is the probability that the initial individual located at x has exactly m

living descendants at t + t ′ and the generating function of f conditioned on observing a size
m at t + t ′ is given by:

〈
exp

(
−

Nt∑

i=1

f (x
(t)
i )

)∣∣∣∣∣size m at t + t ′
〉

= R̃m(x, t, t ′;f ) (3.18)

where R̃m(x, t, t ′;f ) is defined as:

R̃m(x, t, t ′;f ) = Rm(x, t, t ′;f )

Pm(x, t + t ′)
. (3.19)

This shows that all the information about the regime 0 < t < T , conditioned on having the
final size NT = m, is contained in the functions R̃m(x, t, t ′;f ). Equations (3.15–3.17) are
the analogues of (2.7, 2.8, 2.10) in Sect. 2.
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Inserting the expansions (3.16, 3.17) into (3.12) leads to differential equations for the
Rm’s and the Pm’s. At lowest order, R0 and P0 satisfy (3.12) and, at first order, R1 and P1

are related to R0 and P0 through:

∂tR1 = ∂2
xR1 − v∂xR1 +

∞∑

k=2

βk(kRk−1
0 − 1)R1 (3.20a)

∂tP1 = ∂2
xP1 − v∂xP1 +

∞∑

k=2

βk(kP k−1
0 − 1)P1 (3.20b)

R1(x,0, t ′;f ) = e−f (x)P1(x, t ′), P1(x,0) = 1. (3.20c)

By expanding further G2 in powers of e−ν , one could obtain in the same way the evolution
equations of the Rm’s and Pm’s and from (3.15) their initial values.

3.3 The Quasi-Stationary Regime

In this subsection, we show how one can generalize the expression (2.16) of Sect. 2 relating
the properties of the quasi-stationary regime to those of the functional F defined in (3.3) near
the fixed point Q∗

e for v < vc . An alternative (easier) approach to calculate these properties
will be described and used in Sects. 4 and 5.

The generating functions G1 and G2 evolve according to (3.12) and, as soon as the test
function f is positive, G1 and G2 converge to the non-trivial fixed point Q∗

e of F when
v < vc . In order to analyze the long time behaviour of G1 and G2, one can expand F
around Q∗

e :

F(Q∗
e + εφ) = F(Q∗

e ) + εL[φ] + ε2

2!F
(2)[φ,φ] + . . . (3.21)

where the n-linear symmetrical functionals F (n) are defined for any arbitrary set of n func-
tions ψi as:

F (n)[ψ1, . . . ,ψn] = dnF(Q∗
e + s1ψ1 + . . . + snψn)

ds1 . . . dsn

∣∣∣
s=0

. (3.22)

As discussed after (3.10), the linear operator L does not always have a discrete spectrum
(in particular for v > vc). We will assume here that v < vc and that at least the smallest
eigenvalue λ1 is isolated. If the first eigenvalue is not isolated, all the construction below
breaks down and the quasi-stationary state might not exist [12].

As Qe , G1 and G2 all evolve according to (3.12), one can study the dynamical system:

{
∂tu(x, t) = F(u(x, t)),

u(x,0) = u0(x).
(3.23)

When u(x, t) → Q∗
e (x) as t → ∞ and if L has a discrete spectrum for small eigenvalues, the

convergence of u(x, t) is exponential. Then one can introduce as in (2.13) the amplitude A
of the first eigenvector φ1 of L (with the largest relaxation time τ1):

u(x, t) = Q∗
e + φ1(x)e−t/τ1A (u0(·)) + . . . (3.24)

but now the argument of the amplitude A is a function (the initial condition u0(x) = u(x,0)).
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From the initial conditions (3.13, 3.15) of G1 and G2, the generating functions
G1(x, t;f ) and G2(x, t, t ′;f, ν) thus have the following behaviours as t → ∞:

G1(x, t;f ) = Q∗
e (x) + φ1(x)e−t/τ1A(e−f ) + o(e−t/τ1)

G2(x, t, t ′;f, ν) = Q∗
e (x) + φ1(x)e−t/τ1A

(
e−f G1(·, t ′;ν)

) + o(e−t/τ1)

Thus for large t and t ′, at leading orders, G2(x, t, t ′;f, ν) becomes:

G2(x, t, t ′;f, ν) 	 Q∗
e (x) + φ1(x)e−t/τ1A

(
e−f

(
Q∗

e + e−t ′/τ1φ1A(e−ν)
))

	 Q∗
e (x) + φ1(x)e−t/τ1A

(
e−f Q∗

e

)
(3.25)

+ φ1(x)e−(t+t ′)/τ1
d

ds
A

(
e−f Q∗

e + se−f φ1

) ∣∣∣
s=0

A(e−ν) + . . . .

As G2(x, t, t ′;0, ν) = G1(x, t + t ′;ν), one can proceed as in (2.15) by writing A(e−ν) =∑
m Ame−νm and get for Rm and Pm defined in (3.16, 3.17) for m ≥ 1:

Rm(x, t, t ′;f ) 	 Amφ1(x)e−(t+t ′)/τ1
d

ds
A

(
e−f Q∗

e + se−f φ1

) ∣∣∣
s=0

(3.26a)

Pm(x, t + t ′) 	 Amφ1(x)e−(t+t ′)/τ1 . (3.26b)

Thus, the generating function of f given by (3.16), when t, t ′ → ∞, has a finite limit:

lim
t,t ′→∞

〈
exp

(
−

Nt∑

i=1

f (x
(t)
i )

)∣∣∣∣∣size Nt+t ′ = m

〉
=

〈
exp

(
−

Nt∑

i=1

f (x
(t)
i )

)〉

qs

(3.27)

given by:
〈

exp

(
−

Nt∑

i=1

f (x
(t)
i )

)〉

qs

= d

ds
A

(
e−f Q∗

e + se−f φ1

) ∣∣∣
s=0

(3.28)

(note that as in (3.24) the argument of A is a function). We see that, as in (2.16), the prop-
erties of the quasi-stationary state are determined in (3.28) by the amplitude A (expression
(3.28) does not depend anymore on t , t ′, nor on the value of m used to condition the popu-
lation size at t + t ′, nor on the position x of the initial individual).

From the definition (3.23, 3.24), one can see that the amplitude A satisfies:

λ1A(u) = d

dτ
A(u + τF(u))

∣∣∣
τ=0

. (3.29)

As in Sect. 2, this equation can be used to relate A and F . Note that equations similar to
(3.29) appear in other contexts, in particular in the renormalization group theory where A is
called a non-linear scaling field [44]. As in (3.21), one can expand A around Q∗

e :

A(Q∗
e + εφ) = A(Q∗

e ) + εA(1)[φ] + ε2

2!A
(2)[φ,φ] + . . . . (3.30)
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Successive derivatives of (3.29) as defined in (3.22) in the directions of the eigenvectors φn

of L allow one to relate the expansions (3.30, 3.21) of A and F :

A(1)[φi] = δi,1 (3.31a)

A(2)[φi,φj ] = 1

λ1 − λi − λj

A(1)[F (2)[φi,φj ]] (3.31b)

A(3)[φi,φj ,φk]

= 1

λ1 − λi − λj − λk

(
A(1)

[
F (3)[φi,φj ,φk]

] +A(2)
[
F (2)[φi,φj ], φk

]

+A(2)
[
F (2)[φi,φk], φj

] +A(2)
[
F (2)[φj ,φk], φi

])
. (3.31c)

Then, from (3.28), one can obtain the properties of the quasi-stationary regime. For example,
the moments of the number of individuals in the quasi-stationary state are obtained by taking
f = μ constant and taking successive derivatives at μ = 0:

〈N〉qs = − d2

dsdμ
A(Q∗

ee
−μ + sφ1e

−μ)

∣∣∣
μ=s=0

= A(1)[φ1] +A(2)[φ1,Q
∗
e ] = 1 +A(2)[φ1,Q

∗
e ] (3.32)

〈N2〉qs = d3

dsdμ2
A(Q∗

ee
−μ + sφ1e

−μ)

∣∣∣
μ=s=0

= A(1)[φ1] + 2A(2)[φ1,Q
∗
e ] +A(3)[φ1,Q

∗
e ,Q

∗
e ] (3.33)

These expressions are exact and valid as long as the functional F has a non-trivial fixed
point Q∗

e and an isolated largest relaxation time τ1. In order to go further, one needs to know
more precisely Q∗

e and φ1. This will be done in Sect. 5 in the scaling regime v → vc .

4 A Modified Process to Describe Conditioned Histories

Before analyzing this scaling regime we are going to show that one can construct a mod-
ified process reproducing the history 0 ≤ t ≤ T of the branching random walk of Sect. 3
conditioned on a final size NT = 1. This construction is valid both below and above the
critical velocity vc . The quasi-stationary state for v < vc discussed in Sect. 3.3 will appear
as a particular case and its average profile will be calculated in Sect. 4.2.

4.1 Construction of the Modified Process

One way of describing branching random walks conditioned on the survival of a single in-
dividual is to distinguish the path of the surviving particle from the other ones. In the math-
ematical literature [21, 22], this particle is called the spine and has its dynamics modified
in order to prevent it from dying. The rest of the population is generated from this special
particle. We show in the present section that this construction is general for branching ran-
dom walks conditioned on having exactly one survivor at finite time T and requires only
the knowledge of the extinction probability Qe(x, t) and the probability P1(x, t) that there
is exactly one survivor at t .
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To condition the evolution of the population on the survival of one individual at time
t + t ′, (3.18, 3.19) show that one should consider the ratio R̃1(x, t, t ′;f ) = R1(x, t, t ′;f )/

P1(x, t + t ′). From (3.12, 3.20a) satisfied by R0 and R1, one can show that R̃0 and R̃1 satisfy:

∂t R̃0 = ∂2
x R̃0 +

(
−v + 2

∂xQe(x, t + t ′)
Qe(x, t + t ′)

)
∂xR̃0

+
∞∑

k=2

βkQe(x, t + t ′)k−1
(
R̃k

0 − R̃0

)
(4.1)

∂t R̃1 = ∂2
x R̃1 +

(
−v + 2

∂xP1(x, t + t ′)
P1(x, t + t ′)

)
∂xR̃1

+
∞∑

k=2

kβkQe(x, t + t ′)k−1
(
R̃k−1

0 R̃1 − R̃1

)
(4.2)

(where we have used the fact that Qe(x, t) = P0(x, t)). The initial conditions (3.20c) give
R̃0(x,0, t ′;f ) = R̃1(x,0, t ′;f ) = e−f (x).

We are now going to show that the functions R̃0 and R̃1 can be interpreted as the gener-
ating functions at time t of a modified process defined on [0, T ] with T = t + t ′. To do so,
we consider the following process for 0 < t < T in the frame of the wall:

– the system consists of a single particle of type A1 (the “spine” particle) and an arbitrary
number of particles A0;

– a particle of type A0 diffuses at time t in the frame of the wall with a drift

v0(x, t, T ) = −v + 2
∂xQe(x,T − t)

Qe(x,T − t)
(4.3)

and branches into k particles of type A0 at rate β
(0)
k (x, t, T ) = βkQe(x,T − t)k−1:

A0
β

(0)
k

(x,t,T )−−−−−→ kA0 (4.4)

– the particle of type A1 diffuses in the frame of the wall with a drift

v1(x, t, T ) = −v + 2
∂xP1(x, T − t)

P1(x, T − t)
(4.5)

and branches into one particle of type A1 and k − 1 particles of type A0 at rate
β

(1)
k (x, t, T ) = kβkQe(x,T − t)k−1:

A1
β

(1)
k

(x,t,T )−−−−−→ A1 + (k − 1)A0. (4.6)

One can notice that now the drifts and the mutation rates depend both on space and time
through the functions Qe(x, t) and P1(x, t). Moreover, as P1(0, t) = 0 and ∂xP1(0, t) �= 0,
the particle A1 is never absorbed by the wall (whenever it approaches the wall, it is pushed
away (4.5) from it by the drift ∂xP1/P1 which diverges when x → 0). The extinction prob-
ability Q(0)

e (x, t; t ′) of a particle A0 is given by Q(0)
e (x, t; t ′) = Qe(x, t)/Qe(x, t + t ′) and

one can verify that it satisfies (4.1): indeed it is equal to R̃0(x, t, t ′;∞). Thus, at t ′ = 0, i.e.
at the final time T , all particles A0 have disappeared.
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For this modified process, one can consider the new generating function
G̃(0)(x, t, T , f ) = 〈exp(−∑

i f (x
(t)
i ))〉 (resp. G̃(1)(x, t, T , f )) where the summation at time

t is over both particles A0 and A1, given that we start with a single initial individual of
type A0 at position x (resp. A1) at t = 0. In this modified process, the offspring are still
independent as in (3.1) and the function G̃(0) (resp. G̃(1)) is the product of the G̃(i)’s of the
offspring of the initial individual of type A0 (resp. A1). As in (3.1), one can split the time
interval [0, T + dt] into two intervals [0, dt] and [dt, T + dt] and one gets:

G̃(0)(x, t + dt, T + dt, f )

=
∫

e−η2/4

√
4π

G̃(0)(x + η
√

dt + v0(x,0, T + dt)dt, t, T , f )dη

+
∑

k

βkQe(x,T + dt)k−1
(
G̃(0)(x, t, T , f )k − G̃(0)(x, t, T , f )

)
(4.7)

and, as dt is infinitesimal, G̃(0) has the same evolution (4.1) as R̃0. Similarly, writing the
evolution of G̃(1) in the same way shows that it has the same evolution as R̃1. Since the G̃(0)

and R̃0 (resp. G̃(1) and R̃1) have also the same initial conditions, one has R̃0(x, t, t ′;f ) =
G̃(0)(x, t, T , f ) and R̃1(x, t, t ′;f ) = G̃(1)(x, t, T , f ) and the R̃i ’s introduced in (3.19) can
be interpreted as the generating functions of a modified process defined on [0, T ].

When T → ∞ and v < vc , the extinction probability Qe(x,T − t) converges to
Q∗

e (x) �= 0 and P1(x, T − t) decreases as in (3.26). Thus, as T → ∞, the drifts and the
branching rates of the modified process become independent of t :

v0(x, t, T ) → w0(x) = −v + 2
∂xQ

∗
e (x)

Q∗
e (x)

, β
(0)
k (x, t, T ) → βkQ

∗
e (x)k−1 (4.8a)

v1(x, t, T ) → w1(x) = −v + 2
∂xφ1(x)

φ1(x)
, β

(1)
k (x, t, T ) → kβkQ

∗
e (x)k−1. (4.8b)

From the expressions (4.8), one can understand the best strategy for the system to have
a single survivor at T = t + t ′. The branching rates decrease as x increases and vanish as
Q∗

e (x) goes to 0: no population can develop in the region where Q∗
e (x) 	 0 and it prevents

the population from growing exponentially (which would not be compatible with a finite
size at T ). The particle A1 cannot be absorbed because v1(x, t, T ) → ∞ as x → 0.

Remark 1 For the birth-death process of Sect. 2.2, one could similarly construct a modified
process [21] with branching rates βkQ

∗
e
k−1 for particles A0 and kβkQ

∗
e
k−1 for the spine A1,

to describe the quasi-stationary regime.

Remark 2 The construction of a modified process can be easily adapted to intermediate
regimes 0 < t < T conditioned on the survival of two (or more generally to p) survivors
at T . The differential equations satisfied by R2 and P2 could in the same way be interpreted
as the dynamics of a system of three types of particles with the following branching rates:

A0 → kA0, rate βkQe(x,T − t)k−1

A1 → A1 + (k − 1)A0, rate kβkQe(x,T − t)k−1

A2 → A2 + (k − 1)A0, rate kβkQe(x,T − t)k−1

A2 → A1 + A1, rate
k(k − 1)

2
βkQe(x,T − t)k−2P1(x, T − t)
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where A0 and A1 have the same drifts as before and A2 has an additional drift
2∂xP2(x, T − t)/P2(x, T − t) 	 2∂xφ1(x)/φ1(x) for T → ∞. The exponential decay of P1

to 0 with a relaxation time τ1 shows that the reaction A2 → A1 + A1 occurs only for t 	 T .

4.2 Average Profiles

The average density profile ρ(X, t) of the population is defined such that ρ(X, t)dX is the
average number of individuals located in the interval [X,X + dX] in the moving frame of
the wall. It is easy to see that it satisfies:

∂tρ = ∂2
Xρ + v∂Xρ +

∑

k

βk(k − 1)ρ (4.9)

with ρ(0, t) = 0 because of the absorption by the wall and ρ(X,0) = δ(X − x) where x is
the position of the initial individual. If one introduces the growth rate α = ∑

k βk(k − 1), the
solution is given by:

ρ(X, t) = 1√
4πt

e(α−v2/4)t e−v(X−x)
[
e−(X−x)2/4t − e−(X+x)2/4t

]
. (4.10)

Similar expressions were obtained in [1] for a model of cell proliferation.
If v > vc = 2α1/2, the average density decreases to zero and this corresponds to an almost

sure extinction of the population. For v < vc , the divergence corresponds to the exponential
growth whenever the population survives.

We are now going to calculate the average profile ρqs(X) in the quasi-stationary regime
using the modified process of Sect. 4.1. There are two contributions to this profile:

ρqs(X) = ρ1,st(X) + ρ0,st(X) (4.11)

where ρ1,st(X) and ρ0,st(X) are the stationary average density profiles of the particles A1 and
A0 in the modified process. In the moving frame of the wall and in the stationary regime,
particles of type A1 (resp. A0) have a drift w1(X) = −v + 2∂xφ1/φ1 (resp. w0(X) = −v +
2∂xQ

∗
e/Q

∗
e ). The average density profiles ρ0 and ρ1 satisfy equations similar to (4.9) where

we use now the drifts and the branching rates (4.8) of the modified process:

∂tρ0(X, t) = ∂2
Xρ0(X, t) − ∂X (w0(X)ρ0(X, t))

+
∑

k

(k − 1)βkQ
∗
e (X)k−1ρ0(X, t)

+
∑

k

k(k − 1)βkQ
∗
e (X)k−1ρ1(X, t) (4.12)

∂tρ1(X, t) = ∂2
Xρ1(X, t) − ∂X (w1(X)ρ1(X, t)) . (4.13)

There is no source term for ρ1 since the number of particles A1 is conserved. As there is
initially a single particle A1, the density ρ1 is the distribution of its position at time t . The
stationary profile ρ1,st is directly obtained from the expression of w1(X) and (4.13):

ρ1,st(X) = Cφ1(X)2e−vX (4.14)
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where C is a normalization constant such that
∫ ∞

0 ρ1,st(X)dX = 1. The density ρ1,st depends
only on the slowest eigenvector φ1 and its shape near the critical velocity will be studied in
Sect. 5.1.

The extinction probability of A0 particles in the modified process is given by construction
by R̃0(x, t, t ′;∞) = Qe(x, t)/Qe(x, t + t ′) and thus becomes Qe(x, t)/Q∗

e (x) as t ′ → ∞
in the quasi-stationary regime. Therefore a particle A0 gets extinct with probability 1 in the
long time limit. Thus particles A0 are produced by the particle A1 and later on are absorbed
by the wall. Their stationary density ρ0,qs satisfies:

∂2
Xρ0,st(X) − ∂X

(
w0(X)ρ0,st(X)

) +
∑

k

βkQ
∗
e (X)k−1(k − 1)ρ0,st(X)

= −g′′ (Q∗
e (X)

)
Q∗

e (X)ρ1,st(X). (4.15)

The change of variable ρ0,st(X) = e−vXQ∗
e (X)ψ(X) leads for ψ to an equation of the type:

L[ψ] = K(X) (4.16)

K(X) = −g′′ (Q∗
e (X)

)
ρ1,st(X)evX (4.17)

where L is the linear operator defined in (3.8). This equation is an inhomogeneous sec-
ond order linear differential equation that can be solved easily (because one solution of the
homogeneous equation, ∂xQ

∗
e (x), is known). The general solution of (4.16) is

ρ0,st(X) = e−vxQ∗
e (X)∂xQ

∗
e (X)

∫ X

a

dy

[∂xQ∗
e (y)]2e−vy

∫ y

b

∂xQ
∗
e (z)e

−vzK(z)dz.

The stationary profile ρ0,st(X) is then obtained by choosing a = 0 and b → ∞ for ρ0,st(X)

to vanish at X = 0 and X → ∞:

ρ0,st(X) = e−vXQ∗
e (X)∂xQ

∗
e (X)

×
∫ X

0

dy

[∂xQ∗
e (y)]2e−vy

∫ ∞

y

∂xQ
∗
e (z)g

′′ (Q∗
e (z)

)
ρ1,st(z)dz. (4.18)

Equations (4.11, 4.14, 4.18) give the exact average quasi-stationary profile in terms of
only Q∗

e and φ1 which have been used for the construction of the quasi-stationary state.
Section 5 will describe the limit v → vc of Q∗

e (x), φ1(x) and ρqs(X).
The results (4.11, 4.14, 4.18) could also be derived from the dynamical system approach

of Sect. 3.3. The average quasi-stationary profile ρqs(X) at distance X from the wall is ob-
tained by considering the test function f (x) = μδ(x − X) and taking the μ-derivative of
(3.27) at μ = 0, as for the average size in (3.32). Relations (3.31a, b) between A(1)[φi],
A(2)[φi,φj ], L and F (2)[φi,φj ] are then exactly equivalent to the differential equations
(4.12, 4.13) in their stationary regime.

5 Universality Near in the Critical Velocity

In this section, we determine the scaling properties of the quasi-stationary profile when
vc − v → 0+. We are going to see that, in this limit, everything can be expressed in terms of
the shape Qvc(x) of a front on the infinite line at the critical velocity.
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5.1 Extinction Probability and Relaxation Times

The stable fixed point Q∗
e (x) of the functional F defined in (3.3) satisfies the differential

equation (3.5) with the boundary condition Q∗
e (0) = 1 and Q∗

e (x) goes to 0 or 1 as x → ∞.
In Appendix B, we use a perturbation theory to analyze (3.5) on the infinite line by

vc − v → 0+ and to obtain the extinction probability Q∗
e (x) in presence of the wall in the

same limit. The solution Qvc of (3.5) on the infinite line such that Qvc(x0) = 1/2 (where x0

is some arbitrary position), Qvc(x) → 1 as x → −∞ and Qvc(x) → 0 as x → +∞ is given
for large negative x:

Qvc(x) = 1 + (Acx + Bc)e
vcx/2 + O (evcx) (5.1)

where Ac and Bc are constant depending on x0. For v close vc , one can show (see Appen-
dix B) that, on a domain of length L that we will call region I, Q∗

e (x) is given by:

Q∗
e (x) 	

region I
1 − AcL

π
sin

(
πx

L

)
exp

[
vc

2
(x − L − Bc/Ac)

]
(5.2)

where Ac and Bc are the constants defined as in (5.1). The length L is given by:

L = 2π/

√
v2

c − v2 ∼
v→vc

(vc − v)−1/2 (5.3)

and diverges at the critical velocity. In the domain x � L (region II), the non-linearities of
(3.5) must be taken into account and Q∗

e is given at leading order by:

Q∗
e (x) =

region II
Qvc(x − L − Bc/Ac) + O(1/L2). (5.4)

The relaxation times τn of the dynamics (3.2) near the stable fixed point Q∗
e are related to

the eigenvalues λn = −1/τn of the linear operator (3.8). An eigenvector φn with eigenvalue
λn satisfies the second order differential equation:

∂2
xφn − v∂xφn + g′ (Qv(x))φn = λnφn (5.5)

with the boundary conditions:

φn(0) = 0, φn(x)
x→+∞−−−−→ 0. (5.6)

As for Q∗
e , the shape of the eigenvectors φn can be obtained from the ones on the infinite

line as shown in appendix (B). The effect of the boundary condition (5.6) on the wall is to
select the ones which vanish at x = 0. A perturbative expansion in vc − v and λ shows that
the first eigenvalues λn in presence of the absorbing wall are given by:

λn 	 − (n2 − 1)π2

L2
− 4n2π2

vcL3
− 12n2π2

v2
cL

4
+ O

(
1

L5

)
. (5.7)

One can notice that the first three terms in this expansion are independent of the precise
form g(Q) of the non-linearities. The eigenvector φn associated to λn is given (up to a
multiplicative constant) at leading order by:

φn(x) 	
region I

AcvcL(−1)n−1

2nπ
sin

(nπx

L

)
exp

[
vc

2

(
x − L − Bc

Ac

)]
(5.8a)
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in the region I of size L near the wall and by:

φn(x) 	
region II

∂xQvc (x − L − Bc/Ac) (5.8b)

in the region II such that x � L. Appendix B also gives the order of magnitude of the first
correction to φn in both regimes x � L and x > L. As the relaxation times are given by
τn = −1/λn, the longest relaxation time τ1 is given (5.7) by

τ1 	 L3vc

4π2
∼ π√

2vc

(vc − v)−3/2 (5.9)

and is much larger than all the other τn’s (n ≥ 2). One can notice that the same expression
of τ1 was obtained in [12] by a very different approach.

5.2 Quasi-Stationary Profile

The quasi-stationary profile (4.11) is the sum of two contributions (4.14, 4.18) of the mod-
ified process. For v close to vc , the normalization constant C in (4.14) is dominated by the
contribution of region I and is given at lowest order by C 	 8π2evc(L+Bc/Ac)/(A2

cv
2
cL

3). Thus
the stationary profile ρ1,st(X) at distance X from the wall in the modified process is given
by:

ρ1,st(X) 	
region I

2

L
sin

(
πX

L

)2

(5.10)

for X < L. For X � L (region II), the density is given by:

ρ1,st(X) 	
region II

8π2evc(L+Bc/Ac)

A2
cv

2
cL

3
e−vX

[
∂xQvc (X − L − Bc/Ac)

]2
. (5.11)

The corrections to this profile are of order 1/L in both regions.
The density profile ρ0,st(X) given by (4.18) can be rewritten in the following way:

ρ0,st(X) = e−vXQ∗
e (X)∂xQ

∗
e (X)

∫ X

0

dy

[∂xQ∗
e (y)]2e−vy

(I∞ − I (y)) (5.12)

where

I (y) =
∫ y

0
∂xQ

∗
e (z)g

′′(Q∗
e (z))ρ1,st(z)dz (5.13)

and I∞ = limy→+∞ I (y). For x < L, φ1(x) and ∂xQ
∗
e are of order evc(x−L)/2 and Q is of

order 1; for x −L � 1 (region II), all the terms in the integral (5.13) decrease exponentially.
Thus, the integral is dominated by the region of size of order 1 near x 	 L and I∞ scales for
vc − v → 0+ as:

I∞ 	 1

L3

[
8π2

A2
cv

2
c

∫ +∞

−∞
[∂xQvc (z)]3g′′(Qvc (z))e

−vczdz

]
. (5.14)

One notices that I∞ is negative since Q∗
e (x) is a decreasing function and that I∞ is inde-

pendent of the choice of the reference x0 such that Qvc(x0) = 1/2. On the other hand, for
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the same reasons, I (y) is exponentially small and can be neglected compared to I∞ in the
linear region 0 < y < L.

At leading order in the region I, one gets from (5.12):

ρ0,st(X) 	 I∞e−vcX∂xQ
∗
e (X)

∫ X

0

1

[∂xQ∗
e (y)]2e−vy

dy. (5.15)

From (5.2), ∂xQ
∗
e (x) is given for x < L by:

∂xQ
∗
e (x) 	

region I
−AcL

π

[vc

2
sin

(πx

L

)
+ π

L
cos

(πx

L

)]
e

vc
2 (x−L−Bc/Ac)

up to exponentially small corrections. The integral in (5.15) is equal to:

∫ X

0

1

[∂xQ∗
e (y)]2e−vy

dy 	 π2evc(L+Bc/Ac)

A2
cL

2

∫ X

0

dy

[ vc

2 sin(
πy

L
) + π

L
cos( πy

L
)]2

	 evc(L+Bc/Ac)

A2
c

sin( πX
L

)
vc

2 sin( πX
L

) + π
L

cos( πX
L

)
.

Finally the density of A0 particles is given in the region I by:

ρ0,st(X) 	 − I∞Le
vcBc
2Ac

Acπ
sin

(
πX

L

)
exp

[
−vc

2
(X − L)

]
. (5.16)

In the region x < L, the number of particles A0 is exponentially large and ρ1,st(X) is
bounded and much smaller than ρ0,st(X) as shown in (5.10, 5.16). Thus the quasi-stationary
average profile ρqs(X) scales in the linear domain as:

ρqs(X) 	
region I

Kv2
c

4πL2
e−vc(X−L)/2 sin

(
πX

L

)
(5.17)

with a constant K given by:

K = −32π2e
1
2 vcBc/Ac

A3
cv

4
c

∫ +∞

−∞
[∂xQvc (z)]3g′′(Qvc (z))e

−vczdz. (5.18)

One can check that this expression of K is independent of the reference point x0 chosen
for Qvc . For X −L of order 1, ρqs(X) is of order 1/L3 and in the domain X > L (region II),
the density decreases exponentially, so that the total number of individuals is dominated by
the region 0 < X < L. The average size in the quasi-stationary regime is thus given by:

〈N〉qs =
∫ ∞

0
ρqs(X)dX 	 K

L3
evcL/2

∼ (vc − v)3/2 exp

[
π

√
vc

2
(vc − v)−1/2

]
. (5.19)

The divergence (5.19) of 〈N〉qs can also be obtained from (3.32) by expanding Q∗
e in the

basis of the eigenvectors and using (3.31a, b): the leading term (5.19) could then be obtained
by truncating the expansion of Q∗

e after the first eigenvectors φ1, as the first eigenvalue
λ1 	 (vc − v)−3/2 is much smaller than the next ones that scale as (vc − v)−1.
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In [7, 9], Brunet et al. considered a population whose size N is kept constant by always
selecting the N individuals with the largest xi . From [8], they predicted that the effect of the
finite size N is to shift the average velocity 〈v〉 of the population by an amount:

〈v〉 = vc − vcπ
2

2 log2 N
+ (vcπ

2)
3 log logN

log3 N
+ . . . . (5.20)

This N dependence of the velocity was recently derived rigorously in [33]. It is interesting
to notice that this relation between 〈v〉 − vc and N is the same as (5.19) between 〈N〉 and
v − vc in the quasi-stationary state of the present model with an absorbing wall.

6 Exponential Model

There is a simplified version of the problem of a branching random walk with an absorbing
wall, the exponential model, which can be solved exactly [7, 9]. In this exponential model,
time is discrete and at each generation, each individual is replaced by its offspring distributed
according to a Poisson point process: if the parent is at position x, then for every interval
[y, y + dy] there is an offspring in this interval with probability ψ(y − x)dy.

By analyzing the first time step one can show that the extinction probability Qe(x, t) at
time t of the descendance of an individual located at distance x from the wall at time t = 0
evolves according to:

Qe(x, t + 1) = F(Qe(x, t)) = exp

(
−

∫ ∞

0
ψ(y + v − x) (1 − Qe(y, t)) dy

)
. (6.1)

For a general ψ , F is a functional of Qe for which one could try to generalize the approaches
of Sects. 3 and 4. For the special case ψ(x) = e−x , however, the problem reduces to the study
of a one-dimensional mapping. For any Qe(x,0), it is easy to see from (6.1) that at t ≥ 1
Qe(x, t) takes the form

Qe(x, t) = e−ct e
x

(6.2)

and depends on a single parameter ct which satisfies the following recursion:

ct+1 = F(ct ) (6.3)

F(c) = e−v

(
1 −

∫ ∞

0
e−ye−cey

dy

)
. (6.4)

For all v, there is an attractive fixed point c∗ > 0 and the population always has a non-zero
survival probability 1−Q∗

e (x) = 1−e−c∗ex
in the long time limit. The relaxation of Qe(x, t)

to Q∗
e (x) is entirely controlled by the relaxation of ct to c∗: there is a unique eigenvalue

Λ = F ′(c∗) < 1 with the eigenvector

φ1(x) = − exp(x − c∗ex) (6.5)

and one has Qe(x, t) 	 Q∗
e (x) − KΛtex−c∗ex

. Generating functions G1 and G2 defined as
in (3.11, 3.14) also satisfy the same dynamics (6.1). A general initial condition Q(x,0) =
Q0(x) is mapped at the first time step to a function Q(x,1) = e−c(Q0)ex

where the coefficient
c(Q0) is defined by

c(Q0) = e−v

(
1 −

∫ ∞

0
e−yQ0(y)dy

)
(6.6)
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and has the following long time behaviour:

Q(x, t) = exp(−cte
x) 	 Q∗

e (x) − B(c(Q0))Λ
t−1ex−c∗ex

(6.7)

with an amplitude B(c) similar to the function A of Sect. 2. As in (2.17), the function B(c)

satisfies:

ΛB(c) = B(F (c)), B′(c∗) = 1 (6.8)

with F given in (6.4).
The reduction to a one-parameter family exp(−cex) makes the analysis of this spatial

model similar to what we did in Sect. 2.
For example, the generating function of the number N(X) of individuals at a distance

greater than a given X from the wall is given in the quasi-stationary regime by (3.28) with
A(Q) = B(c(Q))/Λ and f (x) = μθX(x) ≡ μθ(x − X). For the exponential model, it can
be reduced to a simple function of μ:

〈e−μN(X)〉qs = 1

Λ

d

ds
B

(
c
(
(Q∗

e + sφ)e−μθX
)) ∣∣∣

s=0
.

By decomposing c((Q∗
e + sφ1)e

−μθX ) in the following way:

c
(
(Q∗

e + sφ1)e
−μθX

) = e−v

(
1 −

∫ ∞

0
e−y

(
Q∗

e (y) + sφ1(y)
)
dy

)

+ e−v(1 − e−μ)

∫ ∞

X

e−y
(
Q∗

e (y) + sφ1(y)
)
dy

= c∗ + sΛ + (1 − e−μ) (J0(X) + sΛJ1(X))

J0(X) = e−v

∫ ∞

X

e−y−c∗ey

dy (6.9)

J1(X) = 1

Λ

∫ ∞

X

e−c∗ey

dy (6.10)

where one can verify that J1(0) = 1, one obtains the generating function:

〈e−μN(X)〉qs = (
1 − (1 − e−μ)J1(X)

)
B′(c∗ + (1 − e−μ)J0(X)). (6.11)

It follows that the average density profile 〈ρ(X)〉qs obtained by taking the derivative of
〈N(X)〉qs and the average size of the population are given by:

〈ρ(X)〉qs = −J ′
1(X) + B(2)(c∗)J ′

0(X) (6.12)

〈N〉qs = 1 + (−B(2)(c∗)
)
J0(0). (6.13)

Let us now analyze the large v limit (which for the exponential model plays the role [9]
of the v → vc limit of Sect. 5). The mapping F(c) has the following expansion near c = 0
(corresponding to Q∗

e (x) = 1):

F(c) = e−v

(
−c ln c + (1 − γ )c + c2

2
− c3

12
+ . . .

)
(6.14)
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where γ = −Γ ′(1) is Euler’s constant. For large v, the stable fixed point c∗ of F is given by

c∗ 	 e1−γ exp(−ev)

and Λ 	 1 − e−v . As in Sect. 2, one can compute B(2) 	 −1/c∗ from (6.8). The functions J0

and J1 in (6.9, 6.10) have different shapes for X < L (region I) and X > L (region II) where
the length L is given by:

L = − ln c∗ 	 ev. (6.15)

Thus the leading terms in (6.12, 6.13) when X < L (region I) correspond to J0 contributions
and, for v → ∞, the average quasi-stationary profile and sizes are given by:

〈ρ(X)〉qs 	 1

L
e−(X−L) (region I, X < L) (6.16)

〈N〉qs 	 e−v

c∗
∼ 1

L
eL. (6.17)

In region II (for X > L), 〈ρ(X)〉qs is decreasing as e−c∗eX
. As in Sect. 5, the region of length

L near the wall has the dominant contributions to the size of the population. Also as in
Sect. 4, one could interpret the J1 terms as the contribution of the A1 particle and the J0

terms as contributions of the A0 particles in the context of the modified process.
One can notice that, in the exponential model too, (6.17) yields the same relation between

the size of the population and the velocity as (39) in [9] (where the size of the population is
kept constant but the velocity fluctuates).

In the limit v → ∞, it is possible to obtain the whole generating function 〈e−μN 〉qs. In
this limit, N scales as 1/c∗ and one should take μ of order c∗ and thus B(c) needs to be
known for c − c∗ = O(c∗). If F(c) in (6.14) is truncated after the first two leading terms
near c∗ as in Sect. 2.3 and Appendix A, one obtains B(c∗ + c∗u) 	 ln(1 + u) in the limit
v → ∞ and the following generating function of the size:

〈
e−μN/〈N〉qs

〉 	
v→∞

1

1 + μ
. (6.18)

Thus in the quasi-stationary regime the size of the population has an exponential distrib-
ution in contrast to what happens (2.33) in the Galton-Watson process. In particular, the
ratio 〈N2〉qs/〈N〉2

qs goes to 2: this result is similar to numerical results for lattice branching
random walks obtained in [12].

7 Conclusion

In the present work, we have studied the quasistationary regime of a branching random
walk in presence of an absorbing wall below the critical velocity [12]. To do so, we have
developed two methods. The first one, discussed in Sect. 3, is a dynamical system approach
allowing to determine the generating functions of the size of the population.

In the second approach, one constructs from the original process a modified stochas-
tic process equivalent to the quasi-stationary regime (Sect. 4). This construction requires
the knowledge of P0(x, t) = Qe(x, t) and P1(x, t), the probabilities of observing 0 and 1
survivor at time t for an initial individual at x. These methods allowed us to determine
(5.17–5.19) the average population size and the density profile in the quasi-stationary regime
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near vc . The average profile has a universal shape (5.17) in a domain of size L ∼ (vc −v)−1/2

and the average size diverges as in (5.19) in a universal way which does not depend on the
precise form of the branching rates βk . These quantities have also been obtained for the
exponential model in Sect. 6. We noticed that both for the branching random walk and the
exponential model, the relation between the velocity and the size of the population (5.19,
6.17) is the same as in a model recently studied in [9] for a population of constant size.

Beyond the average quasistationary profile which has a universal shape near vc (i.e. is
independent of the precise form of the non-linearities g(q) in (3.4)), it would be interesting
to see whether the whole quasi-stationary measure is universal when v → vc . In particu-
lar, it would be interesting to know whether the size of the population has an exponential
distribution in the quasi-stationary regime as in the exponential model (6.18).

Our approach was limited to the case v < vc . For v > vc one expects [12] that there is no
quasi-stationary regime. The construction of the modified process of Sect. 4 remains how-
ever valid and this could be a starting point to understand the absence of a quasi-stationary
regime.

More generally, the construction of the modified process is valid as long as the individuals
are independent. In particular, a modified process could be constructed to describe the evo-
lution of a population conditioned to a finite size NT = 1 in non-uniform media, as in [3, 4],
where the branching rates, the drift and the diffusion coefficients depend on the position x

and where the domains have more complicated geometries (d-dimensional with absorption
on the boundaries). This could be a way of understanding the effect of the geometry of the
domain on the existence and on the properties of a quasi-stationary regime.

Using the modified process, one could also study the dynamical properties and the cor-
relations in time of the quasi-stationary regime. In particular, one could try to determine the
statistical properties of the genealogies in this quasi-stationary regime and compare them
with the results obtained recently for a population of fixed size [7, 9].

Appendix A: Universal Distributions of Population Sizes in the Quasistationary
Regime Near the Transition in Birth-Death Processes:
The Case of Slowly Decreasing Branching Rates

In this appendix, we discuss briefly the quasi-stationary regime of the Galton-Watson
process when the branching rates βk decay too slowly for k2 to be finite. We consider the
case where for large k

βk 	 Bk−1−η (A.1)

with 1 < η < 2. Then, for Q close to 1, F(Q) takes the form for Q close to 1:

F(Q) 	 α(Q − 1) + C(1 − Q)η + . . . (A.2)

with C = BΓ (−η) and α = ∑
k(k − 1)βk .

For α < 0, the fixed point Q∗
e = 1 is attractive and one gets from (2.30) for Q close to 1:

A(Q) 	 (Q − 1)

(1 − C
α
(1 − Q)η−1)1/(η−1)

. (A.3)
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For small α > 0, the fixed point becomes 1−Q∗
e 	 (α/C)1/(η−1), the eigenvalue F ′(Q∗

e ) = λ

scales as λ 	 −α(η − 1) and by integrating (2.30), one gets:

A(Q) 	 (1 − Q)1−η

(
1 − C

α
(1 − Q)η−1

)
1

η − 1

(
α

C

) η
η−1

. (A.4)

Then by taking μ small in (2.16), one gets for α < 0:

〈e−μN 〉qs 	
(

1

1 − C
α
μη−1

) η
η−1

(A.5)

whereas for α > 0, one gets:

〈e−μN 〉qs 	
(

1 + μ

(
C

α

)1/(η−1)
)−η

. (A.6)

Expressions (A.5, A.6), valid for |α| small, show that both below and above the transition,
the distributions of N in the quasi-stationary regime are universal (as up to a rescaling they
depend only on η) and that they differ from what was found (2.33) in the case η > 2).

Appendix B: Perturbative Calculation of the Shape of the Front, of the Eigenvalues
and Eigenvectors for v Close to vc

In this appendix we determine perturbatively, for v − vc small, the stable solution Q∗
e of

(3.5), the eigenvalues λn and their associated eigenvectors φn of the linear operator L defined
in (3.8).

For the shape of Q∗
e as for the eigenvectors our main idea is to derive a perturbation

theory in powers of vc − v (and also in powers of λ for the eigenvectors) in the region where
the non-linear terms cannot be neglected (i.e. in the region where 1 − Q∗

e is not small) and
to match this expansion with the solution which can be obtained in the linear region (where
1 − Q∗

e � 1).

B.1 The Shape of Q∗
e

It is convenient to consider the solution Qv(x) of (3.5)

Q′′
v − vQ′

v + g(Qv) = 0 (B.1)

on the infinite line such that Qv(x) → 1 as x → −∞ and Qv(x) → 0 as x → +∞ (instead
of the solution Q∗

e (x) on the semi infinite line). Here g(Q) = ∑
k βk(Q

k −Q). The boundary
conditions at ±∞ determine Qv up to a translation. One particular solution may be selected
by imposing that

Qv(x0) = 1

2
(B.2)

where x0 is a fixed position (which can be chosen arbitrarily and of course will play no role
in our final results). For v < vc = 2

√
g′(1), the solution of (B.1) has damped oscillations, as

x → −∞, of the form

Qv(x) = 1 + Uv sin

(
π(x + Φv)

L

)
exp

(
vx

2

)
+ O (evx) (B.3)
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where the length L is defined by:

L = 2π(v2
c − v2)− 1

2 (B.4)

so that for large L, one gets

v 	 vc − 2π2

vcL2
. (B.5)

The constants Uv and Φv in (B.3) are a priori complicated functions of v (or L) and also
depend on x0.

If yL is the position of the right-most zero of 1 −Qv(x), then the solution Q∗
e of (3.5) we

are looking for is given by:

Q∗
e (x) = Qv(x + yL). (B.6)

As v approaches vc , the length L diverges, and (B.3) allows one to estimate yL up to correc-
tions exponentially small in L

yL 	 −L − Φv. (B.7)

We now assume that the solution Qvc of (B.1) is known for v = vc . One can then expand
Qv(x) in powers of 1

L
or in powers of vc − v

Qv = Qvc + 1

L2
R + . . . = Qvc + (vc − v)

vc

2π2
R + . . . . (B.8)

Putting (B.8) into (B.1) one gets that R should satisfy

R′′ − vcR
′ + g′(Qvc )R = −2π2

vc

Q′
vc

. (B.9)

One can solve this equation with the required boundary conditions (the equations leading to
higher order terms in the expansion could be solved as well) and one gets:

R(x) = 2π2

vc

Q′
vc

(x)

∫ x

xc

dy

[Q′
vc

(y)]2e−vy

∫ +∞

y

[Q′
vc

(z)]2e−vzdz. (B.10)

For x → −∞, one can show from (B.1) that

Qvc(x) = 1 + (Acx + Bc)e
vcx

2 + H2(x)evcx + H3(x)e
3vcx

2 + . . . (B.11)

where the coefficients Ac and Bc depend on x0 and the polynomes Hn could be obtained
explicitly in terms of these coefficients Ac and Bc by analyzing the non-linear terms of
(B.1).

One can also show from (B.10) or (even better) directly from (B.9) that for x → −∞:

R(x) = π2

(
−Acx

3

6
− Bcx

2

2
− Acx

2

vc

+ Cx + D

)
e

vcx
2 + O (evcx) (B.12)

where the constants Ac and Bc are the same as in (B.11) and the constants C and D could
be determined from the knowledge of Qvc(x) and (B.10).
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This leads (B.8, B.11, B.12) for large negative x to

Qv(x) = 1 +
[
Acx + Bc + π2

L2

(
−Acx

3

6
− Bcx

2

2
− Ac

vc

x2 + Cx + D

)
+ . . .

]
e

vcx
2

+ O(evcx) (B.13)

On the other hand for large negative x, in the range 1 � |x| � L, expression (B.3) becomes

Qv(x) = 1 + Uv

[
π(x + Φv)

L
− π3(x + Φv)

3

6L3
− π3x(x + Φv)

vcL3
+ O

(
L−5

)]
e

vcx
2 + . . . .

(B.14)
The comparison of (B.13) and (B.14) leads to the following expansions for Uv and Φv :

Uv = L

π
Ac + π

L

(
C + Bc

vc

+ B2
c

2Ac

)
+ O

(
1

L3

)
(B.15a)

Φv = Bc

Ac

+ π2

L2

(
D

Ac

− B3
c

3A3
c

− B2
c

A2
cvc

− BcC

A2
c

+ O

(
1

L4

))
. (B.15b)

Then using (B.6, B.7) one gets the following expressions for Q∗
e (x) in the region where

L − x � 1

Q∗
e (x) = 1 − AcL

π
exp

[
vc(x − L − Bc

Ac
)

2

][
sin

(
πx

L

)
+ O

(
1

L2

)]
+ O

(
evc(x−L)

)
(B.16)

and in the region x > L or x − L = O(1):

Q∗
e (x) = Qvc

(
x − L − Bc

Ac

)
+ O

(
1

L2

)
. (B.17)

We emphasize that the knowledge of Qvc(x) is sufficient to determine all the higher order
corrections in 1

L
expansions.

B.2 The Eigenvalues and the Eigenvectors φλ

We consider now the shape of the eigenvectors φλ,v of the linear operator L on the infinite
line. On the infinite line, to each λ, one can associate an eigenvector φλ,v which satisfies:

φ′′
λ,v − vφ′

λ,v + g′(Qv)φλ,v = λφλ,v (B.18)

with the boundary conditions (5.6) φλ,v(x) → 0 as x → ±∞. For v < vc , the solution when
x → −∞ has the form

φλ,v(x) = Vλ,v sin

(
π(x + Ψλ,v)

Lλ,v

)
exp

(
vx

2

)
+ O(evx) (B.19)

where the length Lλ,v is defined by

Lλ,v = 2π(v2
c − 4λ − v2)− 1

2 = L

(
1 − L2λ

π2

)− 1
2

. (B.20)
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On the other hand, it is easy to see that Q′
vc

(x) is an eigenvector for λ = 0 and v = vc ,
(in fact for any v, one has φ0,v(x) = Q′

v(x) up to a multiplicative constant) and one can try
to expand φλ,v in powers of λ and vc − v

φλ,v(x) = Q′
vc

(x) +
∑

n+m≥1

Snm(x)
λn

L2m
. (B.21)

The Snm’s could be determined recursively solving inhomogeneous equations similar to
(B.9). For example

S ′′
10 − vcS

′
10 + g′(Qvc )S10 = Q′

vc

S ′′
01 − vcS

′
01 + g′(Qvc )S01 = −2π2

vc

Q′′
vc

− g′′(Qvc )RQ′
vc

.

As in (B.13) one gets that for large negative x

φλ,v(x) =
[

Acvc

2
x + Bcvc

2
+ Ac + O(λ) + O

(
1

L2

)]
e

vcx
2 + O (evcx) . (B.22)

Comparing (B.22) with (B.19) in the range of large negative x with x � Lλ,v (as in (B.13,
B.14)) one gets that

Ψλ,v = Bc

Ac

+ 2

vc

+ O

(
1

L2

)
+ O

(
1

L2
λ,v

)
(B.23a)

Vλ,v = Acvc

2π
Lλ,v + O

(
1

L

)
+ O

(
1

Lλ,v

)
. (B.23b)

On the infinite line, as λ varies, all the eigenvectors φλ,v satisfy the boundary conditions at
x → ±∞. In the presence of a wall, the eigenvector φλ,v has to vanish at the wall, therefore
the rightmost zero x = −L − Φv of Qv(x) must coincide with a zero x = −nLλ,v − Ψλ,v

of φλ,v . The boundary conditions select that way a discrete set of eigenvalues λn. For vc − v

small, one gets then, up to exponentially small corrections in L:

nLλ,v − L = Φv − Ψλ,v (B.24)

where n is an integer larger or equal to 1. Using the expressions (B.15, B.23a) and (B.20)
this becomes

n

(
1 − L2λ

π2

)− 1
2

− 1 = − 2

vcL
+ O

(
1

L3

)

and this leads to

λn 	 − (n2 − 1)π2

L2
− 4n2π2

vcL3
− 12n2π2

v2
cL

4
+ O

(
1

L5

)
. (B.25)

One should notice that, for n = 1, λ1 ∼ L−3 whereas all the other eigenvalues λn scale
as L−2.

In the frame of the wall, the n-th eigenvector φn is, up to exponentially small corrections,
given by:

φn(x) 	 φλn,v(x + yL)
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and therefore in the range where L − x � 1 one has

φn(x) 	 AcvcL(−1)n−1

2nπ

[
sin

(
nπx

L

)
+ O

(
1

L2

)]
e

vc(x−L)
2 − vcBc

2Ac + O
(
evc(x−L)

)

and in the range where x − L is of order 1

φn(x) 	 Q′
vc

(
x − L − Bc

Ac

)
.
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